منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملBayesian Gaussian Mixture Models for High-Density Genotyping Arrays.
Affymetrix's SNP (single-nucleotide polymorphism) genotyping chips have increased the scope and decreased the cost of gene-mapping studies. Because each SNP is queried by multiple DNA probes, the chips present interesting challenges in genotype calling. Traditional clustering methods distinguish the three genotypes of an SNP fairly well given a large enough sample of unrelated individuals or a ...
متن کاملBayesian Learning of Gaussian Mixture Densities for Hidden Markov Models
An investigation into the use of Bayesian learning of the parameters of a multivariate Gaassian mixture density has been carried out. In a continuous density hidden Markov model (CDHMM) framework, Bayesian learning serves as a unified approach for parameter smoothing, speaker adaptation, speaker clustering, and corrective training. The goal of this study is to enhance model robustness in a CDHM...
متن کاملA Bayesian Filtering Algorithm for Gaussian Mixture Models
A Bayesian filtering algorithm is developed for a class of state-space systems that can be modelled via Gaussian mixtures. In general, the exact solution to this filtering problem involves an exponential growth in the number of mixture terms and this is handled here by utilising a Gaussian mixture reduction step after both the time and measurement updates. In addition, a square-root implementat...
متن کاملFuzzy Gaussian Mixture Models
In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2020
ISSN: 1935-7524
DOI: 10.1214/20-ejs1756